STUDIES ON UROTHION. SYNTHESIS OF (R)-DEPHOSPHO FORM B, A DEGRADATION PRODUCT OF THE MOLYBDENUM COFACTOR

Atsushi Sakurai,* Yuji Hashimoto, Nobuhiro Kuboyama, Yasuhiro Takahasbi, and Yasuaki Okumura

Department of Chemistry, Faculty of Science, Shizuoka University, Ohya, Shizuoka 422 Japan

Abstract: In order to determine the absolute configuration of the dephospho Form-B (3b) derived from urothion (4), 7-amino-2- $[(1R)-1,2-dihydroxyethy]$ thieno $[3,2-g]$ pteridin-5(6H)-one ((R) -3b) and its (1S)enantiomer $((S)-3b)$ were synthesized. Comparing their CD spectra with that of 3b, the R-configuration was concluded for the secondary hydroxyl group on the side chain of 3b, as well as 4.

The molybdenum cofactor, which exists in most molybdenum-containing enzymes, is a complex of Mo^{vt} with molybdopterin, a sulfur-containing reduced pterin, for which structure 1 has been suggested.^{1,2} Several oxidative degradation products of 1 has been isolated. Structure 2a has been assigned to Form A derived from 1 , including the absolute configuration of S at the chiral center on the side chain, on the basis

of the asymmetric synthesis of the dephospho Form A (2b) and its CD spectroscopic analysis.^{3.6} While Form B. which possesses a fused thiophene ring and retains one of the original sulfur atoms, has been assigned to structure $3a$, 34.6 the absolute configuration of $3a$ remained ambiguous. However, the determination of structure 2b suggested that 1, as well as $3a$, has the R-configuration at the chiral center on their side chains. The structure of urothion, $\frac{7.8}{9}$ a pteridine pigment in urine, has been determined as structure 4 by total syntheses. Furthermore, on the basis of the metabolic study of the molybdenum cofactor, urothion was presumed to be a urinary metabolite of $1⁴$. Asymmetric synthesis of desulfurization products (S) -5 and (R) -5 of 4 and their CD spectroscopic analysis indicated that the absolute configuration at the chiral center of 4 had the R -configuration.^{12.13}

We recently attempted the asymmetric synthesis of the thienoquinoxaline derivatives (R) -6 and (S) -6, which were model compounds of dephospho Form B (3b), and obtained important information on the asymmetric synthesis of $3b$.¹⁴ The asymmetric synthesis of $3b$ carried out according to this method, is described below, which establishes the absolute configuration at the chiral center of urothion, as depicted in structure 4.

Scheme 1: a. 1.1 eq. pivalic anhydride, 2.5 eq. pyridine, 0.1 eq. DMAP/CH₂Cl₂, Ar, reflux, 5h, 55%; b. excess RuO₄/CCl₄, rt, 0.5h, 90%; c. 1.1 eq. 2,4,5-triamino-6-hydroxypyrimidine hydrochloride, 1.75 eq. NaHCO₃/ H₂O-MeOH (1:1), reflux, 0.5h, 73%; d. excess 1M NaOH/H₂O-MeOH (1:1), rt, 4h; AcOH (pH 4), 94%; e. 6 eq. PCl₅/POCl₃, Ar, reflux, 12h; f. MeOH, rt, 1h, 27% from 9.

The dichloride 11 was prepared by chlorination of the isoxanthopterin derivative 9, followed by methanolysis (Scheme 1). $^{15+7}$ (R)-DephosphoForm B ((R)-3b) was synthesized via the dihydrothienopterin (R) -14, by utilizing the Wittig reaction of the dichloride 11 with a chiral synthon of D-glyceraldehyde

acetonide 12 which was prepared from D-mannitol according to Bear's method." (S)-Dephospho Form B ((S)-3b) was synthesized in the same method as described above, by utilizing the Wittig reaction with a chiral synthon of L-glyceraldehyde acetonide which was prepared from L-ascorbic acid according to Jung's method.¹⁹

The resulting alkenes (S)-13 and its (R)-enantiomer were used for the syntheses of (R) -14 and its (S)enantiomer after removal of excess amounts of triphenylphosphine with a small size of silica-gel column, respectively. The dihydrothienopterin (R) -14 and its (S) -enantiomer were purified by ion exchange chromatography (Dowex 1X8, acetate form, eluent: $0.05M NH₄OAC$). The thienopterin (R)-3b and (S)-3b were purified by ODS reverse phase chromatography (Merck, LiChroprep RP-8, size B, eluent: 20% MeOH).

Scheme 2: a. 6 eq. PPh₃/CH₃CN, Ar, reflux, 12h; 1.5 eq. Et₃N, 1.1 eq. 12/THF, rt, 12h; b. 8eq. NaSH/EtOH, Ar, reflux, 3h, ; HCl/H₂O (pH 2), rt, 6h, 21% from 11; c. 2 eq. SeO₂/AcOH, Ar, 80°C, 2h, 91%.

For the determination of the absolute configuration, CD spectra in 1% NH₃ of (R)-3band (S)-3b (λ_{ext} 260 nm, $\Delta \varepsilon$ -1.3 and λ_{ext} 260 nm, $\Delta \varepsilon$ +1.3, respectively) were compared with that of 3b²⁰ derived from 4 by desulfurization with Raney-Ni, followed by $SeO₂$ oxidation.^{4,7,8} The spectrum of 3b¹⁴ was found superimposable with that of (R) -3b. From these observations, 3b was confirmed to have the R-configuration, as was suggested from the asymmetric syntheses of (S)-5 and (R)-5.^{12,13} Thus it follows that 4 has the Rconfiguration, which supports the suggestion that 4 might be a urinary metabolite of 1.

References and notes

- (1) J. L. Johnson and K. V. Rajagopalan, Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 6856.
- (2) S. P. Kramer, J. L. Johnson, A. A. Ribeiro, D. S. Millington, and K. V. Rajagopalan, J. Biol. Chem. 1987, 262, 16357.
- (3) J. L. Johnson, B. E. Heinline, and K. V. Rajagopalan, J. Biol. Chem. 1980, 255, 1783.
- (4) J. L. Johnson, B. E. Heinline, K. V. Rajagopalan, and B. E. Arison, J. Biol. Chem. 1984, 259, 5414.
- (5) E. C. Taylor, I. S. Darwish, J. L. Johnson, and K.V. Rajagopalan, J. Am. Chem. Soc. 1989, 111, 7664.
- (6) E. C. Taylor and I. S. Darwish, Adv. Exp. Med. Biol. 1993, 338, 363.
- (7) M. Goto, A. Sakurai, and H. Yamakami, Tetrahedron Lett. 1967, 4506.
- (8) M. Goto, A. Sakurai, K. Ohta, and H. Yamakami, J. Biochem. 1969, 65, 611.
- (9) A. Sakurai and M. Goto, Tetrahedron Lett. 1968, 2941.
- (10) A. Sakurai and M. Goto, J. Biochem. 1969, 65, 755.
- (11) E. C. Taylor and L. A. Reiter, J. Am. Chem. Soc. 1989, 111, 285.
- (12) A. Sakurai, H. Horibe, N. Kuboyama, Y. Hashimoto, and Y. Okumura, Tetrahedron Lett. 1995, 36, 2631.
- (13) A. Sakurai, H. Horibe, N. Kuboyama, Y. Hashimoto, and Y. Okumura, J. Biochem. 1995, 118, 552.
- (14) N. Kuboyama, A. Sakurai, Y. Hashimoto, and Y. Okumura, *Heterocyclic Commun*. 1995, 1, 451.
- (15) Compound 7; ¹H NMR (CDCl₃, δ ppm): 1.27 (9H, s, C(CH₃)₃), 3.91 (3H, s, OCH₃), and 5.13 (2H, s, CH₂). ¹³C NMR (CDCl₃, δ ppm): 27.1 (C(CH₃)₃), 38.8 (C(CH₃)₃), 53.2 (OCH₃), 66.4 (CH₂O), 159.7 (CO₂CH₃), 178.2 (CO₂C(CH₃)₃), and 186.4 (CO).
- (16) Compound 8; ¹H NMR (CDC1₃, δ ppm): 1.19 (9H, s, C(CH₃)₃), 5.25 (2H, s, CH₂), 5.85 (2H, brs, NH₂), 12.90 (1H, brs, NHCO), and 13.55 (1H, brs, NHCO).
- (17) Compound 11; ¹H NMR (CDCl₃, δ ppm): 4.21 (3H, s, OCH₃), 4.90 (2H, s, CH₂Cl), and 5.80 (2H, brs, N_H ₂).
- (18) E. Bear, *Bioch. Prep.* 1952, 2, 31.
- (19) M. E. Jung and T. J. Shaw, J. Am. Chem. Soc. 1980, 102, 6304.
- (20) Compound 3b; ¹H NMR (DMSO- d_6 , δ ppm): 3.61 (2H, m, CH₂OH), 4.90 (1H, q, J=5.0Hz, CHOH), 5.04 (1H, t, J=6.0Hz, CH₂OH), 6.10 (1H, d, J=5.0Hz, CHOH), 6.95 (2H, brs, NH₂), 7.38 (1H, s, =CH), and 8.45 (1H, brs, NHCO). UV (0.1M NaOH): λ_{max} 242 (ε 23800), 268 (28600), and 395 nm (12700). CD (1% NH₃): λ_{ext} 260 nm ($\Delta \epsilon$ -1.3).

Received January 18, 1996